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COMMENT 
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Abstract. We calculate numerically by a transfer-matrix algorithm the critical exponent of 
the surface order parameter, p,, for the case of the ordinary transition. Our result, 
p,/ v = 0.98 * 0.02, agrees with recently published series expansion results, p , /  v = 1.04* 0.05 
and &-expansion results with Pad6 approximants, p , / v  = 1.01 iO.06. 

Most studies of percolation deal with the bulk properties of (generally) infinite systems. 
However, real systems are finite. The study of the influence of boundaries on percolation 
problems has attracted much less attention than it deserves. We will not get into a 
precise description of the complex phase diagram appearing in connection with a 
bounded percolation problem. These different situations are examined in a recent 
review by Diehl [ l] .  We will only be concerned in this comment with the ‘ordinary’ 
transition in this classification. 

We study the case where the probability of having a surface bond is the same as 
that of the bulk. In order to exhaustively describe this transition, only one extra critical 
exponent is necessary compared with the bulk critical properties. All other critical 
exponents can be obtained from those scaling relations [ 11. We choose here to study 
the critical exponent of the surface order parameter, pr. The surface order parameter 
is the probability that a surface bond belongs to the infinite cluster. This exponent 
has recently been determined to be $ in two-dimensional percolation, by methods based 
on conformal invariance [2]. This result has been confirmed numerically [3,4]. 

In three dimensions, to our knowledge, only series expansions and small-scale 
renormalisation results have been published. More specifically, de’Bell and Essam [ 51 
obtained 

P , I u  = 1.04*0.05 (1) 
by series expansions methods. Christou and Stinchcombe [ 6 ]  calculated the ratio p s / p ,  
where p is the bulk critical exponent, on a simple cubic lattice of size 2 x 2 ~ 2  using 
a small-cell renormalisation group technique. Their results were 

p s / p  = 1.659 (2) 
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PSI v = 0.84 (3) 
using p =0.45 and v=O.89. The most recent work is the one by Diehl and Lam [7]. 
They used Pad6 approximants on the &-expansion results and obtained 

(4) P 5 /  v = 1.01 * 0.06. 

We report here a numerical determination of this exponent. We use a transfer-matrix 
method very similar to the one used in [4]. Imagine a simple cubic lattice of dimension 
w x w x L, along the x, y and z axes respectively. The bonds between the nodes in the 
lattice are present with probability p or absent with probability (1 - p ) .  At the bottom 
plane ( x  = 0), we set p = 1. In the y direction, the boundary conditions are periodic. 
The geometry is illustrated in figure 1. Surface sites are those whose first coordinate 
x is equal to w, whereas bottom sites are those for which x is zero. 

The idea behind transfer-matrix algorithms is to ‘knit’ the network by adding layer 
after layer in the z direction. As each new layer is added, we keep track of and update 
all the necessary information on the connections between the sites, i.e. which sites 
belong to which clusters, in the recently added layer. The algorithm shares certain 
similarities with the Hoshen-Kopelman procedure [8] for identifying the clusters of 
connected sites. More specifically, we store an integer-valued matrix A(x, y )  which 
can contain two kinds of information. Each connected cluster which crosses the z 
plane can be labelled by a ‘root’, i.e. a unique site which is chosen to be the closest 
to the bottom plane. Therefore a site is either the root of a cluster, or it belongs to a 
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Figure 1. A schematic representation of the lattice used to calculate P,.  The surface sites 
are shown as circles, filled when they are connected to the bottom plane (grey), or empty 
if not. The transfer matrix method allows one to keep track of all necessary information 
about connectedness, in a single plane, P, cut through the bar. The bonds within such a 
plane (constant z )  are shown as bold lines. 
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cluster whose root is another site. If a site ( x ,  y )  is the root of such a cluster, then the 
value of A(x, y)  will be the number of surface sites of the cluster. If the site (x, y)  is 
not the root of a cluster, then it belongs to a cluster whose root is ( x ’ ,  y‘). We record 
this information in storing the address of the root in A(x, y), for instance as [1+ x’+ 
( w  + I)y‘] in order to get a single integer. Now, in order to distinguish between the 
two possible kinds of information stored (either the address of the root, or the number 
of surface sites connected to the site), we choose by convention to record as negative 
numbers the values of A which are roots. Changing z to ( z  + l),  implies that all 
connections between the two planes, and within the ( z  + 1) plane have to be taken into 
account in order to correctly update the A matrix. The proportion of surface sites that 
are connected to the bottom plane is finally the value of A(0,O) divided by the area 
of the surface wL, since all sites of the bottom plane are connected together. 

This proportion, Ps( w, L), is estimated at the percolation threshold p = pc  = 0.2488. 
The width w is a small number, varying in our case from w = 2 to 32, whereas the 
length L is chosen to be large in order to average out the fluctuations, L = lo6 for w = 2 
to 20 000 for w = 32. P,( w, L) is thus considered, for these L, to be a function of w 
alone, i.e. P , ( w ) .  In order to minimise spurious edge effects, the initial part of the 
‘bar’ (on a length of 1000) is first omitted. Then the value of A(0,O) is recorded every 
tenth of the final length, in order to get an estimate of the statistical errors involved. 
The computation has been carried out on a Cyber 76. The data are shown in figure 2. 

Logiwl 

Figure 2. The probability that a bond at the top surface is connected to the bottom surface, 
P,, plotted against the width of the lattice, w, in a log-log scale. A straight line of slope 
0.98 is shown for reference. 

Usual finite-size scaling arguments lead to the following dependence of Ps( w )  on 
w at the percolation threshold: 

A ,y2 fit gave the estimate 
pS( w )  a w - ~ , ’ ” .  ( 5 )  

PE/ U = 0.98 * 0.02. ( 6 )  
This result agrees well with the results previously cited (equations (1) and (4)). 
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